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> Separated metric compact Hausdorff spaces (compact Hausdorff
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A category

> Separated metric compact Hausdorff spaces (compact Hausdorff
space + metric).

» Nachbin spaces (compact Hausdorff space + order).

Metric is similar to Order (quantale-enrichment).

(Quantales are special symmetric strict monoidal categories.)
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Historical Background
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Compact Hausdorff spaces = Eilenberg-Moore algebras for the ultrafilter
monad on Set.

CompHaus is a variety of infinitary algebras; it has an algebraic flavor.
For example, it is Barr-exact.
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CompHaus has also a topological flavor.

Usually, the opposite of a category with a topological flavor has an
algebraic flavor:

» While Top is not regular, Top°® is regular (in fact, a quasivariety of
infinitary algebras [Barr, Pedicchio, 1995]).

» The opposite of the category of Stone spaces is a variety of algebras
(Boolean algebras) [Stone, 1936]:

homsgone(—, {0,1}): Stone’” — Set

is monadic.
(We recall that every monadic functor to Set is representable, by the
free algebra on one generator.)
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Theorem ([Duskin, 1969], all details in [Barr, Wells, 1985])

The functor
homcompHaus(—; [0, 1]) : CompHaus® — Set

is monadic.

CompHaus® is a variety of infinitary algebras: it has an algebraic flavor.

CompHaus is complete, cocomplete, and Barr-coexact, [0,1] is regular
injective and a regular cogenerator (= Urysohn's lemma).
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Topology + order

Stone duality (between Stone spaces and Boolean algebras) has an

important generalization to ordered-topological spaces: Priestley duality.

Priestley space := Stone space + compatible partial order.

Priestley duality [Priestley, 1970]: Priestley spaces are dual to bounded
distributive lattices (which form a variety).

hompyiestiey(—, {0,1}) : Priestley’” — Set

is monadic.
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Compact Hausdorff Stone

CompHaus®? hom(—01), got | Stone®? MmN, gt
Compact Hausdorff + order Stone + order
? Priestley“? Pom(ZA01)), gt

Question [Hofmann, Neves, Nora, 2018]: is there an analogue with
“compact Hausdorff spaces + order” instead of “Stone spaces + order”?
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Nachbin space (a.k.a. compact ordered space) [Nachbin, 1948]: compact
Hausdorff space + compatible partial order.
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Nachbin space (a.k.a. compact ordered space) [Nachbin, 1948]: compact
Hausdorff space + compatible partial order.

Theorem (A., 2019)

hompachbin(—, [0, 1]) : Nachbin®® — Set

is monadic.

(See [A., Reggio, 2019] for a nicer proof.)
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It is also a way to collect categorical properties of Nachbin:

1. Nachbin is complete and cocomplete [Tholen, 2009].
2. [0,1] is a regular injective regular cogenerator [Nachbin, 1960].

3. Nachbin is Barr-coexact [A., Reggio, 2020]. (Coregularity and
something more already in [Hofmann, Neves, Nora, 2018]).
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Separated metric compact Hausdorff spaces
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From Lawvere, we know that order is similar to metric.

Is there an analogue in the metric setting?
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Before recalling separated metric compact Hausdorff spaces, let us see
some drawbacks of the category of classical compact metric spaces and
non-expansive maps:

» not cocomplete.
Remedy: allow distance oo.
> not complete.

Remedy: topology compatible with the metric, rather than induced
by it.
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Definition

A metric on a set X is a map d: X x X — [0, o] satisfying:
> (reflexivity) d(x,x) = 0;
> (triangle inequality) d(x,z) < d(x,y) + d(y, z).

A metric is separated if d(x,y) = 0 = d(y, x) implies x = y.

All results are true also when restricted to the symmetric case
(d(x,y) = d(y,x).)

If d is only allowed to take values 0 and oo,

» metric = preorder (where d(x,y) = 0 means x < y),

» separated metric = partial order.
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Definition ([Hofmann, Reis, 2018])

(Separated) metric compact Hausdorff space :== compact Hausdorff space
X equipped with a lower semicontinuous (separated) metric
X x X — [0, 00].

Lower semicontinuous:

d(x0, y0) < |i)[Tl>i)pf d(x,y).
y=yo

l.e.: small topological perturbations may yield great increments in
distances, but not great decrements.

Equivalently, continuous wrt the topology generated by the sets (a, o0].
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Definition ([Hofmann, Reis, 2018])

(Separated) metric compact Hausdorff space :== compact Hausdorff space
X equipped with a lower semicontinuous (separated) metric
X x X — [0, 00].

Lower semicontinuous:

d(x0. ¥0) < liminf d(x, y).
y—>yg

l.e.: small topological perturbations may yield great increments in
distances, but not great decrements.

Equivalently, continuous wrt the topology generated by the sets (a, o0].

Example: any compact metric space (in the classical sense).
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Definition ([Hofmann, Reis, 2018])

(Separated) metric compact Hausdorff space :== compact Hausdorff space
X equipped with a lower semicontinuous (separated) metric
X x X = [0, 00].

Lower semicontinuous:

d(x0, y0) < |i)[Tl>i)pf d(x,y).
Y=o

l.e.: small topological perturbations may yield great increments in
distances, but not great decrements.
Equivalently, continuous wrt the topology generated by the sets (a, oo].
. b—a ifa<hb;
Example: [0, 00], with d(a, b) =
0 otherwise.
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Definition ([Hofmann, Reis, 2018])

(Separated) metric compact Hausdorff space := compact Hausdorff space
X equipped with a lower semicontinuous (separated) metric
X x X = [0, 00].

Lower semicontinuous:

d(x0, y0) < lim/inf d(x, y).
Y=Y

l.e.: small topological perturbations may yield great increments in
distances, but not great decrements.
Equivalently, continuous wrt the topology generated by the sets (a, o0].

Example: For any set X, [0,1]% with the product metric (= sup metric)
and the product topology.
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Metric compact Hausdorff spaces are the algebras for the “metric
ultrafilter” monad on the category of metric spaces and nonexpansive
maps (See [Hofmann, Reis, 2018], building on [Tholen, 2009]).
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MetCH,,,, := category of separated metric compact Hausdorff spaces
and nonexpansive continuous maps.
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MetCH,,,, := category of separated metric compact Hausdorff spaces
and nonexpansive continuous maps.

Is
homMetCHsep(_a [O’ OO]) MetCHggp — Set
monadic?
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le.:

1. Is MetCHy,, complete and cocomplete?

2. Is MetCH,,, Barr-coexact?

3. Is [0, 0] a regular injective regular cogenerator of MetCHygep,?
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le.:

1. Is MetCHy,, complete and cocomplete?
v/ Essentially [Tholen, 2009].

2. Is MetCH,,, Barr-coexact?
v[A., Hofmann, 2025] < Main result.

3. Is [0, 0] a regular injective regular cogenerator of MetCHygep,?
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1. Is MetCHy,, complete and cocomplete?
v/ Essentially [Tholen, 2009].

2. Is MetCH,,, Barr-coexact?
v[A., Hofmann, 2025] < Main result.

3. Is [0, 0] a regular injective regular cogenerator of MetCHygep,?
? (Future work.)
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Theorem ([A., Hofmann, 2025])

1. MetCHyg.,, has (epi, regular mono) factorization:

X f 14
Sq P

~ -
~

surjection \\)‘(( .-~ embedding

fIX]

equip f[X] with the metric and topology induced by Y
2. epis = surjective morphisms;

3. regular monos = strong monos = embeddings.
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Theorem ([A., Hofmann, 2025])

MetCH,,,, is coregular.

K—X
f i

NS
K e3> X’

Given an embedding K < X and a morphism f: K — K’, inside X we

can replace K by a copy of K’ (and appropriate adjustments outside of
K’ induced by f).
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Theorem ([A., Hofmann, 2025])

MetCH,.,, is Barr-coexact.

For a separated metric compact Hausdorff space X, a closed subset
K C X induces a quotient of X 4+ X by gluing the two copies of K.

Barr-coexactness: every surjective morphism X 4+ X — Z satisfying
coreflexivity, cosymmetry, cotransitivity (first-order conditions) arises in
this way.

Marco Abbadini On the category of metric compact Hausdorff spaces 21 /23



To sum up
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MetCH,,, = category of separated metric compact Hausdorff spaces
and continuous non-expansive maps. [Hofmann, Reis, 2019]

Is
hom(—, [0, 00]): MetCHY — Set

sep

monadic? l.e.:

1. Is MetCH,., complete and cocomplete? v [Tholen, 2009]
2. Is MetCHy,, Barr-coexact? v [A., Hofmann, 2025]

3. Is [0, 0] a regular injective regular cogenerator? (regular

cogenerator: metric Urysohn's lemma) (Future work.)
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MetCH,,, = category of separated metric compact Hausdorff spaces
and continuous non-expansive maps. [Hofmann, Reis, 2019]

Is
hom(—, [0, 00]): MetCHY — Set

sep
monadic? l.e.:
1. Is MetCH,., complete and cocomplete? v [Tholen, 2009]
2. Is MetCHy,, Barr-coexact? v [A., Hofmann, 2025]

3. Is [0, 0] a regular injective regular cogenerator? (regular

cogenerator: metric Urysohn's lemma) (Future work.)

Thank you.
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